Skip to content

Appendix: Unbiased models' results

Results#

Metric MSE RMSE MAE \(R^2\) statistic MAPE (%) MdAPE (%)
Rolling linear regression 110371.9301 332.2227116 234.0703576 0.9403432378 7.636594873 5.86419415
Rolling polynomial regression 884630.4331 940.547943 393.5678591 0.4983602673 12.2984977 5.491194888
kNN regressor 708562.9645 841.7618217 583.6696106 0.6447619117 10.37620696 8.242460991
Rolling kNN regressor 69306.98241 263.2621933 187.9282248 0.9625391151 6.412249097 4.733349022
Naive XGBoost 469450.7669 685.1647735 498.7413995 0.7646408275 8.971157778 7.471825957
Rolling XGBoost 67758.72249 260.3050566 188.7835581 0.9633759599 6.501568004 4.831666041
Neural networks (57-20-1) 2173130.493 1474.154162 1322.964328 -0.08949911367 24.5471328 25.18931498
Rolling neural networks 264933.6857 514.7170928 322.0846974 0.8566008466 10.2374128 7.382278679
Naive decision trees 589915.7445 768.0597272 550.3918629 0.7042457031 10.05114227 8.073536906
Rolling decision trees 94968.42101 308.169468 216.5232416 0.9486689369 7.211369358 5.384585412
AdaBoost (with DT) 1197958.106 1094.512725 903.7533006 0.3994036256 18.42378427 16.25435846
Rolling AdaBoost (with DT) 262510.5105 512.3577954 379.1674719 0.8581113234 12.16986269 9.953531307
Bagging regressor (with DT) 399350.6124 631.9419375 460.7829264 0.7997855445 8.243560544 6.856250353
Rolling bagging regressor (with DT) 65762.08751 256.441197 184.4860468 0.9644551544 6.295581978 4.707222345

Abbreviations used:#

  • MSE: mean squared error
  • RMSE: root mean squared error
  • MAE: mean absolute error
  • MAPE: mean absolute percentage error
  • MdAPE: median absolute percentage error