Skip to content

Appendix: Biased models' results

Results#

Metric MSE RMSE MAE \(R^2\) statistic MAPE (%) MdAPE (%)
Linear regression 1352593.034 1163.010333 867.0930714 0.2794147959 27.86183292 16.06557412
Polynomial regression 1051763.669 1025.555298 767.3399047 0.4396796974 24.53005988 14.29984301
kNN regressor 12.19616818 3.492301272 1.578744179 0.9999934177 0.04201759327 0.02590745257
XGBoost regressor 85318.35251 292.0930545 216.6817757 0.9539896815 5.771889484 4.133103921
Neural networks (56-20-1) 90932.32792 301.5498763 219.5870593 0.9509621876 5.805839988 4.108291812
Naive decision trees 101915.8061 319.2425506 228.7668409 0.944995967 6.035996068 4.125049304
AdaBoost (with DT) 792811.0638 890.3993845 754.9641695 0.5721193057 22.78368677 17.78113201
Bagging regressor (with DT) 68022.14095 260.8105461 187.8941249 0.9632884022 5.089858455 3.417956829

Abbreviations used:#

  • MSE: mean squared error
  • RMSE: root mean squared error
  • MAE: mean absolute error
  • MAPE: mean absolute percentage error
  • MdAPE: median absolute percentage error